A trompe-l’oeil scagliola top on a three-legged support

Lisya Biçaçi, Jaap Boonstra

Introduction
In March 1999, the Amsterdam Historical Museum acquired at auction a rare Louis XV console table with scagliola top on a cypress wood support, from the third quarter of the eighteenth century. The serpentine shaped top is decorated with a trompe-l’oeil picture of various papers spread out on a dark grey, marbled ground, with a moulded border. The depicted engravings, architectural drawing and map have apparently been copied from the personal papers of the first owner, the Amsterdam tea merchant Mr Matthijs Herfst, whose card is in the left rear corner. The name of the scagliola worker can be found on the edge of the map, ‘Adolphe Jacque fecit Bonna anno 1761’. The top rests on a foliate and rocaille carved frieze, supported by three scrolled cabriole legs with claw and ball feet, which are joined by curved foliate stretchers.

The striking table top fits the theme of the conference: two widely different materials, paper ephemera and durable marble, are imitated in yet another, a mix of gypsum, glue size and pigments, generally known as scagliola. This imitation technique had already quite a tradition by the end of the eighteenth century. In seventeenth-century Italy and Southern Germany, interior architecture and objects such as table tops were decorated with stone imitations made in this material, sometimes simulating pietra dura work. Trompe-l’oeil images of papers and three-dimensional objects such as flowers, writing implements and even musical instruments occur as well. What sets apart the work by Jacque however is the selection of the documents, engravings and maps he depicts. The mere six works that are known of him to date - all of them table tops - show papers which were carefully chosen to serve as an introduction to the owner and commissioner of the work. They mention his name and inform the viewer about personal views and social status.

After Herfst’s death in 1785 the table was probably inherited by his children. When, in the early nineteenth century, the Napoleonic rule over the Netherlands ended, Rococo style furniture, which was generally associated with the French, had become unfashionable and was frequently sold off. After a long period in private ownership abroad, the table resurfaced when it came up for auction. At first in the United Kingdom in 1996 and three years later at Sotheby’s Amsterdam, where the Amsterdam Historical Museum was able to purchase it at 65,000 Dutch guilders (29,550 Euros). Study, research and treatment were then started by Jaap Boonstra, furniture conservator of the museum, who was later joined by Lisya Biçaçi, ceramics, glass and stone conservator in private practice.

The top – the trompe-l’oeil effect
In cross section, the loose top consists of an 8 mm layer of coloured gypsum on a core of circa 22 mm thick mortar. At the time of acquisition, the top was

Figure 1 Table before treatment.

Figure 2 Top before treatment.
Scagliola is made of a coloured paste composed of gypsum, pigments and glue size. Several batches of differently coloured pastes are mixed and kneaded together and pressed on a flat surface. After hardening the surface is scraped, sanded and polished. Small defects like scratches and cavities are filled and the surface is once again polished and burnished. The final burnishing produces a low sheen and compacts the surface. Further decoration can then be added by gouging out a recess in the scagliola surface which is filled with a fresh colour paste of choice. The polishing procedure is repeated, followed by engraving which adds the final detail. The top reads as a statement about its first owner Mr Herfst; his royalist views are illustrated by the portraits of the two stadtholders William of Orange and Maurice of Nassau. Interestingly, the degree of realism which Jacque achieved can still be checked against original prints. Jacque indicated the age of the prints by giving a yellowish tone to the simulated paper. Also, William’s portrait is rather damaged by creases and folds. The trompe-l’oeil effect is enhanced by the casual arrangement of papers that sometimes overlap. As a final illusionistic device, the edges of the portrait of Maurice appear to have been cut just a moment ago; the ‘paper clippings’ still lie scattered around.

The map on top of a stack of other papers to the right shows the geographical span of Mr Herfst’s personal background; the Low Countries and the Rhineland are shown with topographical names in a curious mixture of Dutch, German and Latin. In the centre of the table top the elevation of a canal house draws the attention (figure 7). A caption underneath says (in French) that it is a drawing of the house of Mr Herfst at the Singel canal in Amsterdam. As the renovation of Herfst’s house at Singel 397 was completed in 1761 - the same year
A trompe-l’oeil scagliola top on a three-legged support

that the top is dated - the table was presumably ordered to commemorate this event. The original architectural drawing is not known, but it is possible to compare the scagliola copy to the house as it still stands today. This shows that the picture is fairly accurate; the disposition of the windows and door and the general proportions of the facade are quite recognisable albeit that the reddish marble facade must be considered an artistic liberty. The most obvious change is the nineteenth-century modernisation of the gabled top to a straight cornice. We may infer from the above that Jacque must have been as much an accomplished engraver as he was a scagliola worker, a combined specialisation that enabled him to faithfully copy, in gypsum, the documents and artworks on paper he was supplied with by his client.

The support - a three-legged console

The cypress wood support was made to match the expensive top. The choice of wood, indicative of the fashion of the time; it is very similar to cedar wood, a preferred wood species for wall panelling and furniture in the Potsdam palaces of Frederic II in the mid-eighteenth century. The carving is of a typical Rococo style, signified by the compound curves in the legs that support a frieze with 'agraffes' composed of lightly asymmetrical c-shapes and rippled shell forms. The recessed frieze is bordered by foliate scrolls and acanthus leaves on the front corners. The legs are joined below by foliate stretchers and rest on claw-and-ball feet.
By way of comparison, four tables belonging to the Elector Clemens August for which Jacque made the tops in 1757-1758, are markedly different. As they were intended for the much grander, palatial interiors of castle Augustusburg in Brühl, they are larger in scale and show much bulkier carving and are completely painted and gilded. Stylistic traits of the Amsterdam table such as the carved claw-and-ball feet and the use of natural coloured wood were, on the other hand, favoured in Dutch furniture and suggest that the support may have originated in a region close to the Dutch border where cultural interaction was strong, or in the Netherlands. Rococo style furniture made in Aachen sometimes shows similar carvings and a preference for natural, unpainted wood. However, as console tables do not seem to be a characteristic furniture type in the civic culture of the Aachen area, directly comparable models are hard to find.

The frieze of the support may be compared to the work that sculptors produced for other interior elements, such as, for example, the marble surrounds of fireplaces in castle Augustusburg or a frame belonging to the painting of the coats of arms and names of the regents of the Aalmoezeniers orphanage in Amsterdam, 1764.

Ornamental prints by engravers of the period, such as Juste Aurèle Meissonnier, Pierre-Edmé Babel and Franz Xaver Habermann, do not show exact prototypes of our table but their designs incorporate many individual elements such as the repetitive scrollwork, the agraffe shapes and the acanthus leaves that we also encounter in the carvings of the table.

The construction of the support has the typical rough quality of a carver’s workmanship; it has somewhat improvised joinery of flimsy pegged mortise-and-tenon joints and rails that are made from relatively small and thin sections of wood. The third leg is an unusual feature for a console table, a type of furniture with usually just one or two front legs that are elegantly curving back. For stability, the back rail then needs to be firmly bracketed to the wall. Architectural furniture such as consoles usually conformed with the wall design which determined their position and decoration. The fact that our table is self-supporting and not a console table in the strictest sense might be an indication that the design of the room was not specified or not known in such detail to the carver. Extraordinary pieces of furniture like our table must have formed a special category, which could be integrated in an interior as an exotic element.
As the inside pier walls between the windows at Singel 397 measure a mere 55 cm, the table is too wide to have stood there. Nonetheless, one may safely assume that it was not moved very often and probably had a permanent position, possibly a prominent place on the adjacent wall opposite the fireplace.

Condition

Scagliola top

The table had sustained severe damages from long use and previous repairs. Judging by the pattern of old cracks, the top had once broken into about 25 parts. This damage had necessitated repairs of the top, firstly by re-adhering the broken pieces of scagliola. This seems to have been done mainly using gypsum, but unfortunately, the fragments were not always realigned correctly. The uneven surface which resulted from this was then levelled in places using coarse abrasive methods. Obviously, this caused a sad loss of detail, since the engraving is concentrated in a fraction of a millimetre of the top surface layer. Subsequent re-polishing also caused coloured material to spread and become embedded. Locally, smears of the black filling of the engraving occurred, soiling adjacent areas. Sometimes remains of the white gypsum repair material were left on the surface as well. The original sheen of the surface had lessened because of the re-polishing. To remedy this, extra layers of wax had been applied.

The entire top was then backed with a stone slab, probably intended as an extra precaution against collapse. Plaster had been used to adhere the top to this support.

The moulded edges of the top have lost much of their original crisp outline, especially at the exposed front corners. Permanent losses of the coloured scagliola, such as chips along the cracks and around the edge of the top were filled with new gypsum (circa nine major fills), often of a markedly different black, brownish and white tone. The surface was flawed by countless small pits filled with dirt. The thick coat of wax had accumulated a lot of dirt which further obscured decorative details of the top. Wear and tear was shown by random scratches and moisture marks that had marred the relatively soft gypsum surface.

Wooden support

In the past, all three legs had been broken at their joints with the lower stretchers. The two curved
front stretchers had split half way along their length. Judging by the variety of repairs apparent in the woodwork, the damages had happened on several occasions. An important cause of the collapse of the support was the structural weakness of the strongly curved stretchers and legs which contain a large amount of weak cross-grained timber. The increased weight of the top with its stone backing, further compromised the stability of the support. The damages had resulted in a loss of material around the breaks which had been addressed with ill-fitting repairs made up of various species of wood and a surplus of glue. The inability of traditional adhesives to meet the demands of the construction had called for reinforcement with nails, screws and other metalware. The detached claw- and-ball feet had been reattached using forged iron angle brackets and braces that were either nailed or screwed on. Although these hand-forged metal plates had apparently been fitted individually, some of the original material had been removed to improve the fit. This again resulted in a loss of carved details. The nails and screws caused splits in the wood, made worse by later rusting, weakening the structure further.

Figure 13 Sketch of fractures and fills in the top.

Figure 14 Table before treatment. The stone slab support almost doubles the thickness of the top and makes the table unstable.

Figure 15 Detail of claw-and-ball foot of front leg.

Figure 16 Ditto of proper left leg.
A trompe-l’oeil scagliola top on a three-legged support

Later repair campaigns introduced modern gap fillers like plastic wood and modern glues such as epoxy. Exposed elements of carving that had been knocked off had invariably been replaced with non-matching wood species such as mahogany, oak and pine. The crude repair work hardly ever succeeded in properly realigning the old fragments. To make matters worse, the colour differences that occurred between repairs and original material had probably inspired the application of an all-obscuring opaque dark brown varnish. This final coating was brushed on thickly and showed a heavy craquelure. It effectively masked the grain and texture of the cypress wood (figure 9). Some shrinkage had also occurred, which caused splits in the wood, and possibly deformation of the curved elements such as the stretchers and cabriole legs. This aspect of change remains a bit speculative and hard to verify. Panel construction or right-angled joinery is absent in the support, which makes it hard to find reference points to establish shrinkage or warping.

Summing up; both the top and support had been heavily damaged. The early restoration techniques and the array of materials employed to remedy this had done more harm than good, both at the point of their initial use and in the years that followed. Original material had often been sacrificed during these treatments, resulting in damages to the artwork. The repairs to the construction were mostly inadequate, compromising the stability of the object.

Investigative techniques, research, analysis, cleaning tests

Scagliola top

To gain a better understanding of the damages of the top, a tracing was made of the fracture patterns. It was converted into a line drawing, in which fills and suspected fills were indicated (figure 13). The topography of cracks and fills could then be compared with information drawn from X-radiographs that surprisingly showed the shape and outline of a hidden metal armature. This appeared to consist of twelve scrap metal pieces embedded in the scagliola matrix. It was noted that the fracture patterns were often associated with the location of the metal. Apparently, the inflexible metal had formed a shear line when the top fell and broke. Another aspect that showed up on the X-rays were some of the higher density pigments in the scagliola, for instance in the coastline and the coat of arms on the map. The condition of the surface was examined under ultraviolet illumination which clearly showed how accumulated dirt was present in the wax layers. Bright fluorescence was observed in specific areas such as the border of the map, the coastlines and the posts and lintels of door and windows. This fluorescing appears to be caused by a resinous top layer as the pigments present are not known to fluoresce.

Specific analysis of binding media and pigments was then carried out focusing on the finishing
layers, the comparison between the composition of the scagliola and suspected later fills and the pigments used in the scagliola. The analytical techniques applied were infrared spectrometry, gas chromatography coupled with mass spectrometry, X-ray fluorescence spectrometry (the handheld Bruker Tracer III-V), polarised microscopy, scanning electron microscopy element dispersive radiography. IR showed beeswax was present in the top coating. GC-MS indicated that in later repair fills no binder was present, whilst in the original scagliola protein glue was found. Linseed oil was also identified by GC-MS as a component of the original surface. XRF was used as a non-destructive pre-selection tool to find promising sampling areas for pigment analysis. Further analysis of these samples was then carried out by polarised light microscopy and SEM-EDX. Table 1 sums up the pigments that were found:

Based on this information concerning the pigments, fillers, coatings and binders present in the scagliola, solvents were selected for test cleaning of the soiled surface coating. Solvents or solvent combinations such as white spirit, acetone, acetone-xylene or acetone-ethanol applied with lightly moistened cotton swaps delivered poor results. White spirit had the additional drawback of being retained in the porous material, causing a temporary staining. Ethyl-acetate was effective but unsafe as fillings of the engraving started to

<table>
<thead>
<tr>
<th>Sample location</th>
<th>elements</th>
<th>material</th>
</tr>
</thead>
<tbody>
<tr>
<td>coat of arms with lion</td>
<td>blue, red</td>
<td>Ca, S, As, Hg, (Sr), Fe</td>
</tr>
<tr>
<td>dark area tabletop</td>
<td>dark grey</td>
<td>Ca, s, As, (Sr), Fe</td>
</tr>
<tr>
<td>yellow background text 'scipiadas'</td>
<td>yellow</td>
<td>Ca, S, Fe, (Sr)</td>
</tr>
<tr>
<td>green background of the house</td>
<td>greenish</td>
<td>Ca, S, (Pb), (Sr)</td>
</tr>
<tr>
<td>brown background, picture with William of Orange</td>
<td>light brown</td>
<td>Ca, S, (Pb), (Sr)</td>
</tr>
<tr>
<td>blue shadow of the house</td>
<td>light grey blue</td>
<td>Ca, S, (Sr), (Pb), (Fe)</td>
</tr>
<tr>
<td>Ameland</td>
<td></td>
<td>gypsum, red lead</td>
</tr>
<tr>
<td>doorpost of the house</td>
<td></td>
<td>gypsum, realgar</td>
</tr>
<tr>
<td>coastline north of The IJ river</td>
<td></td>
<td>gypsum, red lead</td>
</tr>
<tr>
<td>northern border of Groningen</td>
<td></td>
<td>gypsum, realgar</td>
</tr>
</tbody>
</table>

Table 1: Pigment analysis results.
A trompe-l’oeil scagliola top on a three-legged support
dissolve as well. In addition, there was the aspect of clearance; we felt there was a risk that solvents would transport dissolved material back into the porous gypsum. The cleaning technique sometimes needed small adjustments. For instance, on areas with thick wax layers, a short wetting with solvent, followed by mechanical cleaning (picking) was effective. In general, solvents administered in gels, emulsions and compresses worked in a more controlled fashion and were most effective. (See for details the treatment paragraph below.)

As part of the treatment, the modern gypsum adhesive layer between the scagliola and the stone slab was cut by means of a frame saw with a 5 cm wide blade. Thus, the scagliola top was separated from its backing. This enabled us to check, from the underside, the joints between fragments. No apparent instability was observed. The composition of the coarse mortar, some odd traces such as drill holes and scratch marks could be seen.

Although quite a lot of technical information about scagliola can be found in literature, we thought it would be useful to get a better ‘feel’ for the material by producing a small batch of scagliola samples. This did indeed provide us with some useful pointers about the material.

Gypsum comes in various qualities and has a limited shelf life. To achieve the correct hardness and avoid porosity, use a fresh alabaster gypsum. When gypsum is mixed with a diluted glue size, the size functions as a retardant. Small variations in the concentration of the glue size have an effect on the setting time of the paste. Too high concentrations of glue may cause shrinkage. Pigments may influence the setting time as well. Some pigments will cause a faster setting of the paste than others. The mixture ratio of pigments and gypsum influences the end result. The hardness of the scagliola diminishes with an increasing amount of pigments. It is essential to polish the hardened scagliola with progressively finer grades of polishing stones or papers. After every polishing step, small defects such as air bubbles should be filled with a thin slurry of coloured paste. The final polishing steps will burnish and compact the surface, which improves hardness and gloss. The repeated polishing will also unavoidably cause pigments to spread and contaminate adjacent areas of a different colour. This may complicate the interpretation of surface analysis.

Inlaying by pressing gypsum paste in a gouged out recess depends on correct mixture proportions to achieve good bonding and avoid shrinkage.

Wooden support
An earlier assessment of the support had indicated that the wood had been refinished as part of a repair treatment, however, we remained uncertain about the presence and stratification of the earlier surface coatings. Samples were taken from the surface coating for cross-sectional analysis using a compound light microscope. The samples showed that an early, possibly original, varnish layer with a white fluorescence was still present on the wood which had been re-coated at least three times. Two
resinous varnishes with a more yellowish-orange fluorescence had been applied on top of it and finally the all-obscuring dark brown pigmented varnish had been brushed on to cover it all.

To establish whether the disfiguring secondary finishes were removable, solvent test cleaning was attempted initially. Polar solvents such as ethanol and isopropanol removed the dark brown layer but also affected the underlying finish layer. Attempts at controlling the action of solvents by mixing them into gels brought only limited success. An additional problem of solvent cleaning was the re-deposition of dark remnants of material in the cracks and crevices of the original varnish. Fortunately, a different approach soon offered itself as a promising alternative. Due to its brittleness and poor adhesion, the dark brown top layer could be removed mechanically by picking with dental instruments and spatulas. The sideways thrust of small highly polished, round tipped instruments was sufficient to dislodge the upper layer without apparent damage to the substrate.

Wood identification of thin sections was done by transmitted light microscopy. To document the curves, the outline of the legs and front stretchers was traced onto a transparent foil before dismantling the structure. Perhaps unsurprisingly, the left and right legs turned out to be mirror images, as were the left and right front stretchers. This proved quite help-
A trompe-l’oeil scagliola top on a three-legged support

ful when a section was missing on one side but still present on the opposite part. The drawn outlines were later used as a control to check the accuracy of the reassembled parts.

Treatment Scagliola top

Cleaning

The conservation treatment of the top aimed at improving the legibility of the object, which meant that treatment of the surface was given preference. The removal of soiled finish layers and disfiguring remnants of earlier repair fills were addressed first. Non-matching retouches and fills were then toned in. While gaps and cracks in the surface would need to be filled, no attempt was to be made to reposition the misaligned fragments of scagliola. Although, in several places, these fragments had been fitted without being exactly aligned in the horizontal or vertical plane, the surface had been redressed since, so repositioning would never be able to achieve a convincing and satisfying aesthetical effect. Moreover, dismantling of the top fragments would probably cause additional damage and was therefore not considered.

Cleaning the top started with the removal of wax layers and grime. After attempts described in the paragraph above, the most effective and safest technique was an alternate application of an emulsion and a solvent gel based on formulas suggested by Richard Wolbers of Delaware University.

Emulsion formula O/W

50 ml ShellSol D60 (D: de-aromatised grades)
20 ml Triton x-100, non-ionic cleaning agent, complemented with demineralised water and shaken, until an emulsion has formed
For a thicker emulsion formula 50/50 ShellSol D60 and demineralised water is used

Solvent gel formula

100 ml xylene
20 ml Ethomeen C-25
2 g Carbopol 934
1.5 ml demineralised water
Few drops of surfactant

Carbopol and Ethomeen were first mixed to avoid agglomeration, then the solvent was added. A few drops of surfactant and finally demineralised water were slowly added until a homogeneous gel was obtained. After treatment, to remove any remains

Figure 28 Cleaning the top during Richard Wolbers’ course.

Figure 29 Detail: a. before and b. after removal of the dirt from scratches and marks.
Figure 30 Detail: a. before and b. after filling.

Figure 31 a. and b. new fill during treatment.

Figure 32 Detail of old fill; a. before and b. after retouching.

Figure 33 Reference map, c. 1773 from Nieuwe Geographische Reise- en Zak-Atlas, Jan Christiaan Sepp, Boekverkoper te Amsterdam, 1773.

Figure 34 Detail of map a. before and b. after retouching.
on the surface, an acid-free tissue slightly moistened with white spirit was used to clean the treated area. Finally, a moisture absorbing tissue was used to ensure a dry surface.

Filling

Although scagliola is, to some extent, porous, it has a quite hard matrix due to additions mentioned before. The larger losses were filled with off-white, low-expansion dental gypsum Silky Rock (SR) which is a harder type of gypsum. It also has a good flow and very smooth finish. Smaller missing areas were filled with Modostuc with an extra few drops of pH neutral PVAC. All areas to be filled were first sealed with Paraloid B72, 5% in acetone.

Retouching

Retouching was necessary for the newly filled areas and for covering unsightly old repairs. As a standard method, a wax barrier layer was applied to these areas prior to in-painting with water based fluid acrylic paint (Golden).

Some areas of the map of the Low Countries were missing due to damages and levelling treatments in the past. Assuming that the artist had used actual maps, we looked at old maps to help to reconstruct the continuity of the essential geographical features that were lost. However, study of maps from different periods (circa 1730-1773) gave the impression that the artist had drawn his own interpretation of a map rather than a precise reproduction. The map on figure 33, though of a somewhat later date, was the one that showed most similarity to the ‘scagliola map’ and was therefore used as the example to copy. It was possible to remedy the most disturbing lacunas. Attempting to go further and completely inpaint all losses would, arguably, make the treatment
more an interpretation than an accurate reconstruction and was therefore judged unnecessary.

Out of concern for the fragile state of the scagliola top, it was decided to back it with a light-weight honeycomb panel. We expected that the increased supporting surface would diminish stress within the scagliola. A 28 mm thick backing panel was adhered to the underside of the top with patches of silicon paste. (Locally applied Paraloid B72 in acetone served as a barrier layer between the silicon paste and scagliola.) To avoid a disturbingly visible addition, a rebate was cut in the edge of the lightweight panel which then could fit within the table frame and thus, the top visually retained its original thickness and contour. By replacing the stone slab support by a light-weight backing panel the total weight of the top was significantly reduced and an important threat to the stability of the support had been removed.

The tops of the four Brühl console tables by Jacque that are in private ownership have survived in a much better condition than the Amsterdam top. The gloss of their surfaces and their vivid colours are a useful reminder of how these can be factors in the legibility of the trompe-l’oeil imagery and how these can influence the aesthetic appearance. An attempt was therefore made to restore some of the old sheen by the application of a coat of micro-crystalline wax. It was clear from the outset however that this could never undo the severe scratching and uneven re-gluing in our table.

Support

Cleaning

Removal of the dark brown top layer was carried out according to the procedure described above. On exposed areas, where the older layers had worn off, the adhesion of the dark brown top coat was much better and it was consequently harder to remove (claw-and-ball feet, surfaces directly adjacent to earlier repairs).

The result of this laborious mechanical picking and scraping was a significant improvement of the look of the stand; the wood grain could once again be appreciated. The original transparent varnish coating needed just a thin application of beeswax to regain saturation and gloss.

Disassembly

Treatment of the construction of the stand commenced by dismantling the misaligned parts. All hardware that held them together was removed. The variety of nails and screws that had been used forms an account of the date and origin of the repairs. Superfluous glue remnants were removed with solvent (gels). Epoxy bonds have were broken mechanically by cutting and by scorching with a hot spatula or a soldering iron which softened the polymer enough to be scratched and peeled away.

Structural reassembly

Positioning of the incomplete fragments correctly would involve a certain amount of guesswork as

Figure 39 Successful cleaning: the front agraffe half cleaned.

Figure 40 Problematic cleaning: one of the claw-and-ball feet cleaned.
the correct curves and shapes could no longer be derived by merely holding the pieces together. Here, tracings of the contours or wooden jigs made from the opposite leg or stretcher were often a useful guide to establishing the original position of fragments. The comparative size and shape of an opposite leg and stretcher were then used for reference. Also, the continuous curves within the leg or stretcher itself helped to define the position of the detached pieces. When the exact position of loose parts had been established, new cypress wood would be added wherever necessary to compensate for losses. Fitting the new wood to old surfaces of breaks was done with the help of carbon paper. This served to transfer the relief of the old surface onto the new wood which was then gradually trimmed away to form a negative of the old surface. After aligning the parts, they were either glued with hot animal glue or with carvable epoxy paste. When the fit of a joint was not precise enough or if the load on a particular joint was high, epoxy was the adhesive of choice. To ensure reversibility, the faces of the glue joints were first coated with an easily removable barrier layer of hide glue. For assembly of the legs and stretchers, the partly reconstructed original mortise-and-tenon joints could be re-used. Former screw and nail holes were used to accommodate bamboo pins, glued in, to reinforce fragile parts and joints. Small cypress wood plugs were put in on the surface to hide the bamboo pins. Small losses/flaws were filled with gesso and retouched. Any losses of the carvings were compensated with new wooden inserts which were then re-carved. The new cypress wood was toned with a bitumen solution, then colour matched and finished with amber varnish and a coat of wax. The objective was to reach a uniform saturation and gloss of finish whilst preserving the original varnish.

Conclusion

A large part of this conservation treatment was essentially concerned with the re-treatment or mitigation of earlier repairs. The scagliola trompe-l’oeil picture can be appreciated much better after cleaning, retouching and refinishing. Since this object typically invites scrutiny at a close range, details matter. To allow such close inspection, the table is now exhibited in a sturdy transparent showcase. There was no deadline for this treatment, which gave us ample opportunity to find out about the most feasible treatment options. The investment in time - some 630 hours were spent on the treatment alone - was deemed to be warranted by the historical, aesthetic and artistic importance of the object.
Acknowledgements
We wish to thank Suzan de Groot, Henk van Keulen and Luc Megens (Cultural Heritage Agency) for the analysis of the constituents of the scagliola table top.

Lisya Biçaç, conservator stone, ceramics and glass
Researcher at Delft University of Technology
bicaci.lisya@gmail.com, l.bicaci@tudelft.nl

Jaap Boonstra, furniture conservator
Amsterdam Museum
j.boonstra@amsterdammuseum.nl

Notes
1 Measurements of top: depth 480 mm, width 945 mm, thickness 43 mm (after treatment ca. 32 mm) and of stand: height 670 mm x width 875 mm x thickness 470 mm.
2 Made by Adolphe Jacque, Bonn 1761.
3 Four more tops of similar form have survived in a private collection. They are dated 1757-1758 and signed Adolph(e) Jacque and supposedly were made for the castle Augustusburg, Brühl of Elector Clemens August. (Kurfürst Clemens August, Landesherr und Mäzen des 18. Jahrhunderts, Ausstellung in Schloss Augustusburg zu Brühl, Verlag M. DuMont Schauberg: Köln, 1961.) A fifth, larger and rectangular top dated and signed Adolph Jacque à Bonn 1760, is in the Westfälisches Landesmuseum für Kunst und Kulturgeschichte, Münster (Inv. nr. K 194 LM). It has been argued this work also once belonged to the collection of Elector Clemens August. See B. Meier, ‘Mitteilungen des Landesmuseums’, in: Westfalen, Hefte für Geschichte, Kunst und Volkskunde 5, 1913, pp. 62-64. We thank G. Dethlefs, curator of the museum, for this information. The building and interior decoration of the Augustusburg palace was a large-scale project which took decades to complete and numerous craftsmen and artists were involved. The Rococo interiors were decorated for instance by Italian stucco workers who produced the much admired reliefs and three dimensional sculptures, and they also made the colourful marble imitations in plaster. Designs are attributed to Johan Adolf Biarelli, the stuccowork was done by Giuseppe Artario, Carlo Pietro Morsegno, Joseph Anton Brilli.
4 R. Baarsen (ed.), Rococo in Nederland, Waanders; Zwolle, 2002, pp. 22-23. S.A.C. Dudok van Heel writes that in 1785 the inheritance of Herfst and his wife was divided amongst their three children. The house was left to his son Michiel, and

Figure 42 Stand after assembly, new compensation wood still has to be colour matched.

Figure 43 Detail of same.

Figure 44 Top after conservation.
Dudok van Heel believes that the table went to him as well. Since Michiel Herfst didn’t have any children Dudok van Heel believes that the table was sold after his death by his inheritors to art dealers or brokers that were active in Holland in the early nineteenth century. This might be how it came to Britain. A descendant of Charles Tennyson d’Eyncourt (1784-1861), owner of the now demolished Bayons Manor in Lincolnshire sold the table at auction in 1996. See: ‘Een trompe l’oeuil van Singel 397’ in: Amsteladamum 86 (1999), p. 5.

5 Recently successful businessmen like Herfst, who belonged to the religious minority of Lutherans in the Netherlands and who was born from immigrant (German) parents would typically have difficulty to enter the circles of the eighteenth-century Amsterdam regents’ class. Non-withstanding their wealth, men like Herfst remained outsiders who were excluded from office in the city government. This may explain why he turned to the regents’ opponents and sided with the royalist faction.

Comparing measurements of the width of the facade or the pier walls of the house in the drawing to the real building gives a scale of c. 1:12.

In the second Ante room (Room 46) of Augustusburg an Emperador marble fireplace stands of which the late Rococo decoration on the frieze shows some similarity to the Amsterdam support. I. Glade, Die kurfürstliche Marmorkamine des 18. Jahrhunderts im Schloss Augustusburg in Brühl, Tectum: Marburg, 2014, pp. 108-111.

R. Baarsen, De Amsterdamse Meubelbouwers en de geschiedenis van de meubelmakerij in de tweede helft van de achttiende eeuw, Waanders Uitgevers: Zwolle, 1992 17, 63

After separating the top from its backing plate during treatment we found deep scratches and a couple of drilled holes in the coarse mortar of the top. These were possibly meant to improve adhesion.

During treatment 628 g of metal was removed, which consisted of iron brackets and braces, wire nails and forged nails or screws (both nineteenth-century and modern). It was obvious the hardware had been placed and refitted by more than one generation repairers.

To the extent that it proved too hard to identify for the auctioneers, who described it as walnut.

The reason for the local application of what seems to be a varnish is not clear; was it applied by the maker or is it a result of some later treatment? Was it intended to enhance gloss or perhaps to protect against soiling from the adjacent areas when polishing the surface?

Microscopical features were used for wood identification with the multiple entry identification key GUESS. See E. Wheeler et al. (editor), Computer-Aided Wood Identification, North Carolina State University, Raleigh: September 1986, Bulletin 474. The identification was then checked against references in F.H. Schweingruber, Anatomy of European woods, Verlag Paul Haupt: Bern and Stuttgart, 1990, pp. 130-137.

See http://www.oldmapsonline.org

Belgium Foederatum-Marianus Joseph 1730-1770
Belgica Foederata Complectes Septem - Tobias Conrad Lotter 1760-1770
Belgii Pars Septentrionalis - Johann Baptist Homann 1730-1770
Belgium Foederatum - Seutter Matthaus 1740-1760

Materials and suppliers, recipes

- Golden acrylic paint: Van Beek, Amsterdam
- Amber varnish, hide glue, micro-crystalline wax (mixture of paraffin and Cosmoloid wax in white spirit): Kremer Pigmente
- Schmincke water colour paint: Van Ginkel, Amsterdam
- Bitumen solution: Droguerie Le Lion, Brussel
- Carbopol 934, Ethomeen C-25, ShellSol D60, xylene, Triton (x-100): Fischer Science (www.fishersci.nl)
- Carvable epoxy for wood repairs: Fa. Bok, Amsterdam
- Cold setting fish glue: Laverdure & fils, Paris
- Cypress wood: Fijnhout B.V., Amsterdam
- Demineralised water
- Gesso (chalk, hide glue)
- Gypsum, dental: Silky Rock, www.dentco.nl
- Honeycomb panel, 28 mm. Aluminium honeycomb, skins: glass fibre impregnated with epoxy resin: CEL Components S.R.L., Villanova di Castenaso, Italy
- Modostuc (composition: chalk, kaolin, polyvinyl acetate and an acrylic ester), Paraloid B72, pH neutral polyvinyl acetate glue: Labshop (www.labshop.nl)
- Sikaflex paste-MS polymer: SIKA Nederland B.V., Utrecht

P Vierl, Putz und Stuck, 1987
Photo credits

- Cat’zArts, École nationale supérieure des beaux-arts; figure 12
- Jan Dorscheid (RMA); figure 22
- René Gerritsen; figure 17
- Studio Rijksmuseum; figures 4, 6, 11
- Monique Vermeulen (AHM); figures 43, 44, 45
- Rob Versluis (AHM); figures 14, 15, 16
 http://www.wazamar.org/Nederlanden/
- VIIprov1773/VII-prov-kaarten.htm; figure 33
- If not mentioned otherwise, the authors.